

(12) United States Patent

Luc et al.

(10) **Patent No.:** US 9,108,782 B2

(45) **Date of Patent:** Aug. 18, 2015

(54) DISPENSING SYSTEMS WITH IMPROVED SENSING CAPABILITIES

(71) Applicant: S.C. Johnson & Son, Inc., Racine, WI (US)

Inventors: Tai P. Luc, Oak Creek, WI (US);

Claudia V. Gamboa, Northfield, IL (US); Mark E. Johnson, Racine, WI (US); Daniel J. Hanak, Milwaukee, WI

Assignee: S.C. Johnson & Son, Inc., Racine, WI

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 5 days.

(21) Appl. No.: 13/652,388

(22)Filed: Oct. 15, 2012

Prior Publication Data (65)

US 2014/0103479 A1 Apr. 17, 2014

(51) Int. Cl.

G08B 23/00 (2006.01)B65D 83/00 (2006.01)A61L 9/12 (2006.01)A61L 9/14 (2006.01)

(52) U.S. Cl.

CPC . **B65D 83/00** (2013.01); **A61L 9/12** (2013.01); A61L 9/14 (2013.01); A61L 2209/111 (2013.01); A61L 2209/133 (2013.01)

(58) Field of Classification Search

CPC B65D 83/00; A61L 9/12; A61L 9/14; A61L 2209/111; A61L 2209/133; H05K

USPC 222/52, 63; 340/693.6; 53/74 See application file for complete search history.

(56)**References Cited**

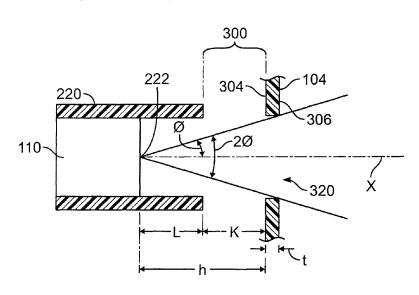
U.S. PATENT DOCUMENTS

2,550,825	A	5/1951	Kolodie
2,613,108	A	10/1952	Krause
2,928,573	A	3/1960	Edelstein
2,971,382	A	2/1961	Harris
2,991,912	A	7/1961	Thomas et al.
3,018,056	A	1/1962	Montgomery
3,127,060	A	3/1964	Vosbikian et al
3,138,331	A	6/1964	Kutik
3,165,238	A	1/1965	Willey
3,185,356	A	5/1965	Venus, Jr.
3,187,948	A	6/1965	Hunt
3,187,949	A	6/1965	Mangel
3,199,732	A	8/1965	Strachan
3,214,062	A	10/1965	Mahon
3,228,609	A	1/1966	Edelstein et al.
3,240,389	A	3/1966	Genua
		(Cont	tinued)

FOREIGN PATENT DOCUMENTS

AR	056799	11/2006
AU	591829	9/1989
	(Co	ntinued)

OTHER PUBLICATIONS


JP 2006-159071—English Translation Jan. 2014.* (Continued)

Primary Examiner — J. Casimer Jacyna Assistant Examiner — Benjamin R Shaw

ABSTRACT

A dispensing system includes a dispenser, at least one sensor, and a shroud including at least one aperture. A virtual shield is provided between the sensor and the shroud to reduce background noise.

18 Claims, 19 Drawing Sheets

(56) Referen	nces Cited	4,989,755 A 5,014,881 A	2/1991	Shiau Andris
U.S. PATENT	DOCUMENTS	5,014,884 A	5/1991	Wunsch
3,289,886 A 12/1966	Goldsholl et al.	5,018,963 A 5,022,557 A	6/1991	Diederich Turner
3,305,134 A 2/1967	Carmichael et al.	5,025,516 A *		Wilson 4/623 Renfro
	Kropp Weber	5,025,962 A 5,055,822 A		Campbell et al.
3,369,697 A 2/1968	Glucksman et al.	5,105,133 A	4/1992	Yang
3,388,834 A 6/1968	Hart Kolodziej	5,134,961 A 5,175,791 A		Giles et al. Muderlak et al.
	Kolodziej	5,198,157 A	3/1993	Bechet
3,419,189 A 12/1968		5,221,025 A 5,230,837 A	6/1993 7/1993	Privas Babasade
	McAvoy Mangel	5,243,326 A *	9/1993	Disabato 340/555
3,497,108 A 2/1970	Mason	5,249,718 A 5,269,445 A	10/1993 12/1993	Muderlak Tobler
	Wilkins Mangel	5,337,926 A	8/1994	Drobish et al.
3,543,122 A 11/1970	Klebanoff et al.	5,337,929 A 5,342,584 A		van der Heijden Fritz et al.
3,584,766 A 6/1971 3,587,332 A 6/1971		5,342,384 A 5,349,945 A		Wass et al.
3,589,563 A 6/1971	Carragan et al.	5,353,546 A	10/1994	
3,610,471 A 10/1971 3,615,041 A 10/1971	Werner Bischoff	5,353,744 A 5,358,147 A	10/1994 10/1994	Adams et al.
3,617,214 A 11/1971		5,383,580 A		Winder
3,627,176 A 12/1971		RE34,847 E * 5,392,768 A		Muderlak et al 222/25 Johansson et al.
3,643,836 A 2/1972 3,658,209 A 4/1972	Freeman et al.	5,394,866 A	3/1995	Ritson et al.
3,664,548 A 5/1972	Broderick	5,397,028 A 5,434,386 A		Jesadanont Glenn et al.
	Winder Nixon, Jr. et al.	5,445,324 A		Berry et al.
3,726,437 A 4/1973	Siegel	5,449,117 A		Muderlak et al. Rubsamen et al.
, ,	Florant et al. Rogerson	5,450,336 A 5,487,502 A	1/1996	
	Doyle et al.	5,489,047 A		Winder
3,779,425 A 12/1973		5,497,764 A 5,499,016 A *		Ritson et al. Pantus
3,784,061 A 1/1974 3,817,429 A 6/1974	Hogan Smrt	5,503,303 A	4/1996	LaWare et al.
3,841,525 A 10/1974	Siegel	5,520,166 A 5,522,378 A		Ritson et al. Ritson et al.
3,856,443 A 12/1974 3,865,275 A 2/1975	Salvi De Nunzio	5,531,344 A	7/1996	Winner
3,870,274 A 3/1975	Broe	5,542,605 A	8/1996 8/1996	Campau
	Fegley et al. Phillips	5,547,721 A 5,591,409 A		Watkins
	Pelton	5,622,162 A		Johansson et al.
3,974,941 A 8/1976 3,980,205 A 9/1976	Mettler	5,647,388 A 5,657,910 A	8/1997	Butler, Jr. et al. Kevser
RE29,117 E 1/1977		5,673,825 A	10/1997	Chen
	White et al.	5,676,283 A 5,685,456 A	10/1997	Wang Goldstein
4,004,715 A 1/1977 4,006,844 A 2/1977	Williams et al. Corris	5,695,091 A	12/1997	Winings et al.
4,011,927 A 3/1977	Smith	5,699,243 A 5,702,036 A	12/1997 12/1997	Eckel et al.
	Meetze, Jr. Difley et al.			Barradas
4,068,780 A 1/1978	Fegley	5,743,251 A		Howell et al.
	Petterson Freyre	5,743,252 A 5,755,218 A		Rubsamen et al. Johansson et al.
4,235,373 A 11/1980	Clark	5,772,074 A		Dial et al.
4,238,055 A 12/1980	Staar Doenges et al 340/567	5,787,947 A 5,791,524 A		Hertsgaard Demarest
4,396,152 A 8/1983	Abplanalp	5,804,827 A *	9/1998	Akagawa et al 250/370.06
	Gutierrez	5,806,697 A 5,810,265 A		Harbutt et al. Cornelius et al.
	Hill et al. Brunet	5,811,766 A	9/1998	Fabrikant et al.
4,636,091 A * 1/1987	Pompei et al 374/124	5,823,390 A 5,826,570 A		Muderlak et al. Goodman et al.
4,666,638 A 5/1987 4,671,435 A 6/1987		5,853,129 A	12/1998	
4,690,312 A 9/1987	Crapser et al.	5,862,844 A * 5,884,808 A	1/1999	Perrin
4,695,435 A * 9/1987 4,742,583 A 5/1988	Spector 422/124 Yoshida et al.	5,884,808 A 5,908,140 A	6/1999	
4,798,935 A 1/1989	Pezaris	5,922,247 A	7/1999	
4,801,093 A 1/1989 4,816,951 A 3/1989	Brunet et al.	5,924,597 A 5,924,606 A	7/1999 7/1999	Lynn Huizing
	Muderlak et al.	5,938,076 A		Ganzeboom
4,836,420 A 6/1989	Kromrey	5,946,209 A		Eckel et al.
	Iggulden et al. Drews et al.	5,962,930 A 5,964,403 A		Cluff et al. Miller et al.
4,916,762 A 4/1990		6,000,658 A	12/1999	McCall, Jr.
4,967,935 A 11/1990	Celest	6,006,957 A	12/1999	Kunesh

(56)			Referen	ces Cited	6,889,872 B			Herman et al.	
		TTC 1	DATENIT	DOCUMENTS	6,903,654 B2 6,926,002 B2			Hansen et al. Scarrott et al.	
		U.S	PALENT	DOCUMENTS	6,926,172 B			Jaworski et al.	
6.0	026,987	Α	2/2000	Burnett et al.	6,926,211 B	2	8/2005	Bryan et al.	
	029,659			O'Connor	6,929,154 B			Grey et al.	
6,0	036,108	A	3/2000		6,938,796 B2			Blacker et al.	
	039,212		3/2000		6,948,192 B2 6,968,982 B		9/2005 11/2005	Hipponsteel Burns	
	092,912 142,339		7/2000	Nelson Blacker et al.	6,971,560 B			Healy et al.	
	151,529		11/2000		6,974,091 B			McLisky	
	158,486			Olson et al.	6,978,914 B			Furner et al.	
6,	161,724	A		Blacker et al.	6,978,947 B2		12/2005		
	182,904			Ulczynski et al.	6,981,499 B2 6,997,349 B2			Anderson et al. Blacker et al.	
	196,218 206,238		3/2001	Voges Ophardt	7,000,853 B		2/2006		
	216,925		4/2001		7,011,795 B	2		Thompson et al.	
	220,293			Rashidi	7,021,499 B			Hansen et al.	
	237,461		5/2001		7,032,782 B			Ciavarella et al.	
	237,812			Fukada	7,160,515 B2 7,168,273 B2			Murdell et al. Neergaard et al.	
	249,717 254,065			Nicholson et al. Ehrensperger et al.	7,182,227 B			Poile et al.	
	264,548			Payne, Jr. et al.	7,188,485 B	2	3/2007	Szpekman	
	267,297			Contadini et al.	7,195,139 B			Jaworski et al.	
6,2	293,442	B1	9/2001	Mollayan	7,201,294 B2			Carlucci et al.	
6,2	296,172	B1	10/2001		7,207,500 B2 7,215,084 B3			Hudson et al. Sharrah et al.	
	297,297 343,714			Brookman et al. Tichenor	7,213,084 B			Scheindel	
	343,714			Contadini et al.	7,222,760 B		5/2007	Tsay	
	357,726			Watkins	7,223,166 B			Wiseman, Sr. et al.	
6,3	361,752	B1		Demarest et al.	7,223,361 B			Kvietok et al.	
	371,450			Davis et al.	7,265,673 B2 7,296,765 B2		9/2007	Rodrian	
	390,453			Frederickson et al.	7,290,763 B2			McLisky	
	394,153 394,310			Skell et al. Muderlak et al.	7,306,167 B			Colarusso et al.	
	409,093			Ulczynski et al.	7,308,790 B		12/2007		
	415,957		7/2002	Michaels et al.	7,320,418 B			Sassoon	
	419,122		7/2002		7,341,169 B2 7,344,123 B2		3/2008	Bayer Pankhurst et al.	
	446,583		9/2002		7,365,810 B			Gotoh et al.	
	454,127 454,185		9/2002	Suomela et al.	7,398,013 B			He et al.	
	E37,888			Cretu-Petra	7,407,065 B	2		Hooks et al.	
	461,325		10/2002	Delmotte et al.	7,437,930 B			Lasserre et al.	
	478,199			Shanklin et al.	7,461,650 B 7,481,380 B		1/2008	Kand Kvietok et al.	
	499,900		12/2002		7,497,354 B			Decottignies et al.	
	510,561 516,796			Hammond et al. Cox et al.	7,509,955 B			Cole et al.	
	517,009		2/2003		7,538,473 B			Blandino et al.	
	529,446			de la Huerga	7,540,433 B			Fleming et al.	
	533,141			Petterson et al.	7,556,210 B2 7,584,907 B2			Mandell et al. Contadini et al.	
	540,155		4/2003	Yahav Hess et al.	7,597,099 B			Jones et al.	
	554,203 567,613		5/2003		7,610,118 B			Schramm et al.	
	588,627			Petterson et al.	7,611,253 B	2	11/2009		
RI	E38,207	Е	8/2003	Benoist	7,619,202 B			Yu	250/215
	607,102			Griese et al.	7,628,339 B2 7,654,416 B2			Ivri et al. Buining et al.	
	610,254 612,464			Furner et al.	7,661,562 B			Tyrrell et al.	
	619,562			Petterson et al. Hamaguchi et al.	7,670,479 B			Arett et al.	
	644,507			Borut et al.	7,673,820 B			Ivri et al.	
6,0	669,105	B2		Bryan et al.	7,686,191 B		3/2010		
6,6	672,129	B1		Frederickson et al.	7,687,744 B2 7,690,530 B2			Walter et al. Schneider et al.	
6,6	688,492	B2	2/2004	Jaworski et al. Haygreen	7,722,807 B			Keller, Jr. et al.	
	694,536 698,616			Hidle et al.	7,735,694 B			Brown et al.	
	712,287			Le Pesant et al.	7,739,479 B	2		Bordes et al.	
6,	722,529	B2		Ceppaluni et al.	7,740,395 B	2		Samuel et al.	
	739,479			Contadini et al.	7,762,714 B			Freeman et al.	
	769,580			Muderlak et al.	7,766,194 B2 7,798,420 B2			Boll et al. Lind et al.	
	785,911 790,408			Percher Whitby et al.	7,798,420 B		9/2010		
	790,408			Hygema et al.	7,837,065 B			Furner et al.	
	830,164			Michaels et al.	7,871,020 B	2		Nelson et al.	
6,8	832,701	B2	12/2004		7,893,829 B			Sipinski et al.	
	834,847			Bartsch et al.	7,909,209 B			Reynolds et al.	
	837,396			Jaworski et al.	7,930,068 B2			Robert et al.	
	843,465 877,636		1/2005	Scott Speckhart et al.	7,954,667 B2 7,963,475 B2			Furner et al. Rodrian	
	877,924			Mears et al.	7,979,723 B			Dooley et al.	
0,0	J11,527	271	1, 2003	Transport Control	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	., 2011	200103 00 001	

(56)	Referen	nces Cited	2010/027259 2010/032023			Broncano Atencia et al.	
U.S.	PATENT	DOCUMENTS	2011/003068	1 A1	2/2011	Sordo et al. De Vries et al.	
7 001 267 D2	7/2011	Wastanala and	2011/007367 2011/007618			Wolosuk Hammond et al.	
7,981,367 B2 7,995,295 B2	8/2011	Kvietok et al. Chen	2011/008926	0 A1	4/2011	Van Roemburg	
7,998,403 B2		Uchiyama et al.	2011/009504			Sipinski	
8,016,207 B2 8,051,282 B2		Kvietok et al. Sipinski et al.	2011/012531 2011/020048		5/2011 8/2011	Cennini et al.	
8,052,934 B2	11/2011		2011/027832		11/2011	Reynolds et al.	
8,061,562 B2		Carpenter et al.	2012/009120			Hotaling et al.	222/52
8,074,836 B2 8,074,970 B2		Reynolds et al. Pankhurst et al.	2012/011188	4 A1*	5/2012	Choi	222/52
8,091,734 B2	1/2012	Furner et al.	F	OREIG	N PATE	NT DOCUMENTS	
8,119,064 B2		Woo et al.					
8,170,405 B2 8,177,102 B2		Harris Hammond	AU AU	659 4932	9805 1200	4/1992 11/2000	
8,224,481 B2		Bylsma et al.	AU AU		.300 !399	7/2001	
8,261,941 B2 * 8,302,812 B2		Woo et al 222/52 Reynolds	DE	19803		8/1999	
8,342,363 B2	1/2013		DE DE	10392 10392		4/2005 6/2005	
8,357,114 B2		Poutiatine et al.	EP		3598	10/1981	
8,360,273 B2 8,381,951 B2		Reinsel et al. Helf et al.	EP	0274		8/1990	
8,389,966 B2*		Saiki 250/574	EP EP	401 0641	.060 727	12/1990 8/1995	
8,430,337 B2		Pearce et al.	EP	676	5133	10/1995	
2002/0020756 A1 2003/0079744 A1		Yahav Bonney et al.	EP EP	0719)234 '006	7/1996 2/1997	
2003/0132254 A1	7/2003	Giangreco	EP EP	0956		11/1999	
2004/0011885 A1 2004/0028551 A1		McLisky Kvietok et al.	EP	1194	351	4/2000	
2004/0028331 A1*		Cho et al 62/126	EP EP	1076 1184		2/2001 3/2002	
2004/0033171 A1		Kvietok et al.	EP	1214		6/2002	
2004/0035949 A1 2004/0074935 A1	2/2004 4/2004	Elkins et al.	EP	1214		6/2002	
2004/0155056 A1	8/2004		EP EP	1240 1316		9/2002 6/2003	
2004/0219863 A1		Willacy	EP	1370		12/2003	
2004/0265164 A1 2005/0004714 A1	1/2004	Woo et al. Chen	EP	1382		1/2004	
2005/0224596 A1	10/2005	Panopoulos	EP EP	1407 1430		4/2004 6/2004	
2005/0234402 A1 2006/0011737 A1		Collins et al. Amenos et al.	EP	1522	2506	4/2005	
2006/0011737 A1 2006/0037532 A1		Eidson	EP EP	1547 1645		6/2005 4/2006	
2006/0060615 A1		McLisky	EP	1675		7/2006	
2006/0078460 A1 2006/0086824 A1		Ryu et al. Pearce et al.	EP	1695		8/2006	
2006/0137619 A1	6/2006	Dodman et al.	EP EP	1726 1771		11/2006 4/2007	
2006/0153733 A1 2006/0175357 A1		Sassoon Hammond	EP	1824	760	8/2007	
2006/01/3337 A1 2006/0191955 A1		McLisky	EP EP	1844 1848		10/2007 10/2007	
		Litchfield 222/52	EP	1848		10/2007	
2007/0036673 A1 2007/0138326 A1	6/2007	Selander Hu	EP	1874		1/2008	
2007/0204511 A1		Lee et al.	EP EP	1976 2041		10/2008 4/2009	
2007/0235555 A1	10/2007	Helf et al.	EP		.875 A1	10/2009	
2008/0272148 A1 2008/0277411 A1		Malik et al. Beland et al.	EP	2143		1/2010	
2008/0279731 A1	11/2008	Goreham et al.	EP EP	2187 2190		5/2010 6/2010	
2008/0290113 A1 2009/0020560 A1		Helf et al. Kraus	EP	2200	751	6/2010	
2009/0020300 A1 2009/0045219 A1		Helf et al.	EP EP	2204 2207		7/2010 7/2010	
2009/0045220 A1		Helf et al.	FR	2671		1/1991	
2009/0117012 A1 2009/0185951 A1		Bankers et al. Litten-Brown et al.	GB	1033		6/1966	
2009/0218413 A1	9/2009	Withers	GB GB	2054 2094		2/1981 9/1982	
2009/0284361 A1* 2009/0294471 A1	11/2009 12/2009	Boddie et al 340/439	GB	2248		4/1992	
2009/0294471 A1 2009/0302056 A1	12/2009		GB	2305 2085		4/1997	
2009/0314849 A1	12/2009	Litten-Brown et al.	GB GB	2375		10/1999 11/2002	
2010/0025427 A1 2010/0037512 A1		Chiou et al. Durand	GB	2392	2438	3/2004	
2010/0037312 A1 2010/0038379 A1		Butler et al.	GB GB	2392 2392		3/2004 3/2004	
2010/0044468 A1		Granger et al.	JP	62171		7/1987	
2010/0059602 A1 2010/0221143 A1		Chiou et al. Broncano Atencia et al.	JP	3114		5/1991	
2010/0221143 A1 2010/0226818 A1		Miyagi et al.	JP JP	3159 06170		7/1991 6/1994	
2010/0237108 A1	9/2010	Anderson et al.	JP	10085	313	4/1998	
2010/0252574 A1 2010/0266266 A1	10/2010	Busin Garcia Fabrega et al.	JP JP 2	200070		3/2000 4/2002	
Z010/0Z00Z00 Al	10/2010	Garcia Faurega et al.	J1 2	2002-113	1370	4/2002	

(56)	Refer	ences Cited	WO	2004093929	11/2004	
` /			WO	2004105816	12/2004	
	FOREIGN PAT	ENT DOCUMENTS	WO	2004105817	12/2004	
			WO	2004105818	12/2004	
JР	2004-331517	11/2004	WO	2004110507	12/2004	
JР	2006-159071	* 6/2006	WO	2005001212	1/2005	
JР	2007-246528	9/2007	WO	2005014060	2/2005	
KR	10-0284158	9/2000	WO	2005018691	3/2005	
WO	8805758	8/1988	WO	2005023679	3/2005	
wo	91/15409	10/1991	WO	2005072059	8/2005	
wo	9519304	7/1995	WO	2005072522	8/2005	
wo	9529106	11/1995	WO	2005113420	12/2005	
wo	9603218	2/1996	WO	2006012248	2/2006	
wo	9630726	10/1996	WO	2006044416	4/2006	
wo	9846280	10/1998	WO	2006058433	6/2006	
wo	9934266	7/1999	WO	2006064187	6/2006	
wo	0047335	8/2000	WO	2006084317	8/2006	
wo	00/64802	11/2000	WO	2006104993	10/2006	
wo	0064498	11/2000	WO	2006105652	10/2006	
wo	0075046	12/2000	WO	2006108043	10/2006	
wo	0078467	12/2000	WO	2006114532	11/2006	
wo	0107703	2/2001	WO	2007029044	3/2007	
wo	0121226	3/2001	WO	2007045828	4/2007	
WO	0125730	4/2001	WO	2007045834	4/2007	
wo	0126448	4/2001	WO	2007045835	4/2007	
wo	0166157	9/2001	WO	2007052016	5/2007	
wo	0240177	5/2002	WO	2007064188	6/2007	
wo	0240376	5/2002	WO	2007064189	6/2007	
WO	02072161	9/2002	WO	2007064197	6/2007	
WO	02079679	10/2002	WO	2007064199	6/2007	
WO	02087976	11/2002	WO	2007132140	11/2007	
WO	02094014	11/2002	WO	2007146332	12/2007	
WO	03005873	1/2003	WO	2008056131	5/2008	
WO	03037748	5/2003	WO	2008149065	12/2008	
WO	03037750	5/2003	WO	2009103738	8/2009	
WO	03042068	5/2003	WO	2009130927	10/2009	
WO	03062094	7/2003	WO	2009151213	12/2009	
WO	03062095	7/2003	WO	2010030629	3/2010	
WO	03068412	8/2003	WO	2010039621	4/2010	
WO	03068413	8/2003	WO	2010101455	9/2010	
WO	03086902	10/2003	WO	2010130891	11/2010	
WO	03086947	10/2003	WO	2010145038	12/2010	
WO	03098971	11/2003	WO	2011045620	4/2011	
WO	03099682	12/2003	WO	WO2012/057834 A2	5/2012	
WO	03104109	12/2003	WO	WO2013/043696 A2	3/2013	
WO	2004002542	1/2004		OTHED DIT	BLICATIONS	
WO	2004043502	5/2004		OTHERPU	DEICAHONS	
WO	2004067963	8/2004	ретли	22012/062005 Into	nal Search Report and Written	Onin
WO	2004073875	9/2004			паг эсагси кероп ана written	. Орш-
WO	2004081303	9/2004	ion date	d May 22, 2014.		
WO	2004093927	11/2004				
WO	2004093928	11/2004	* cited	by examiner		

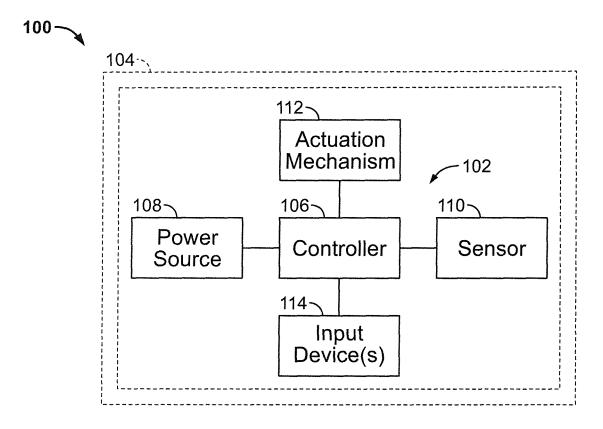
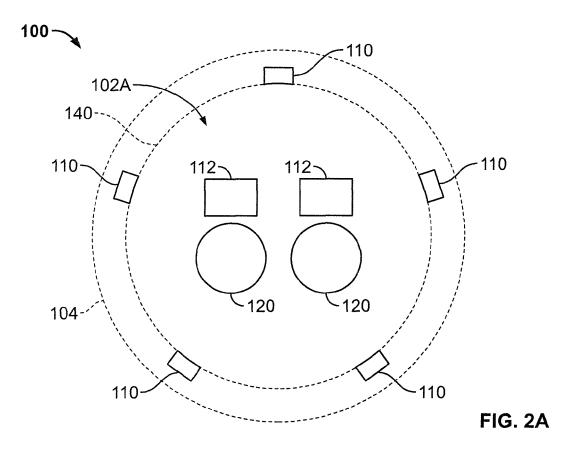
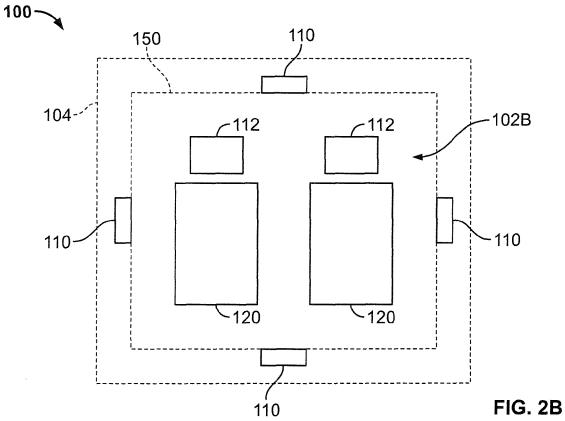
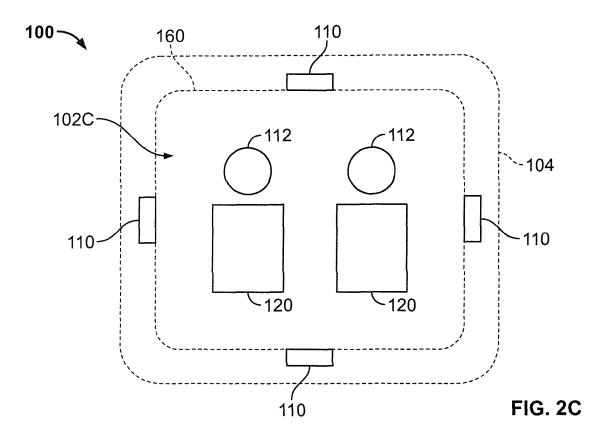
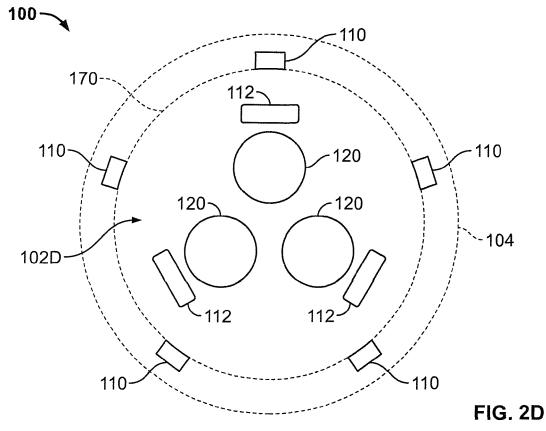






FIG. 1

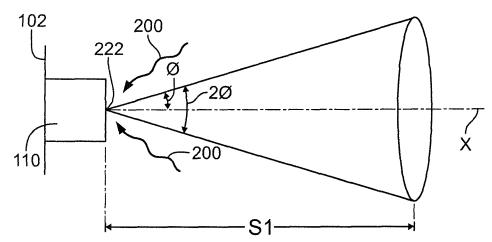
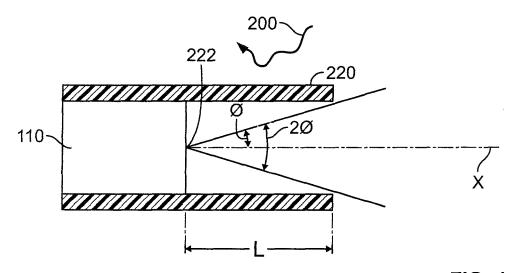
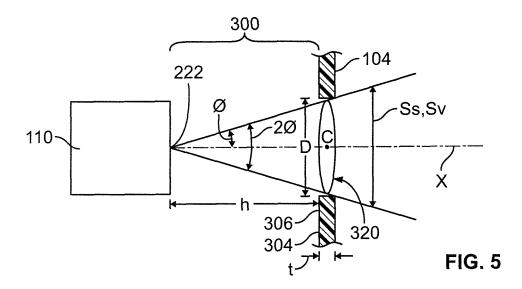
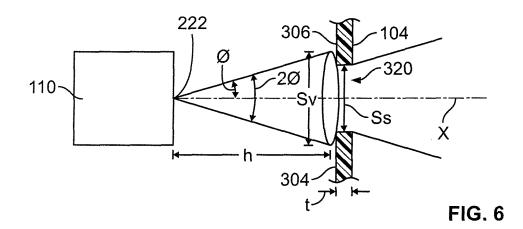


FIG. 3

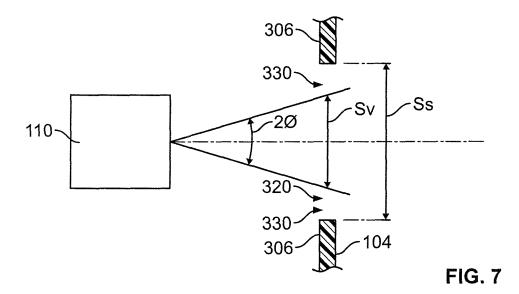

FIG. 4

FIG. 4A

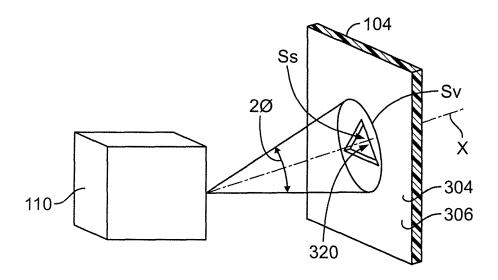


FIG. 8

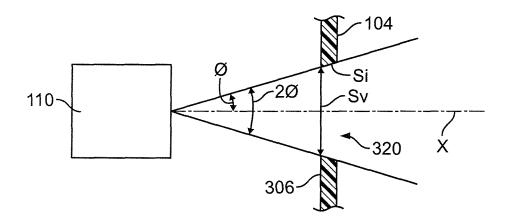


FIG. 9

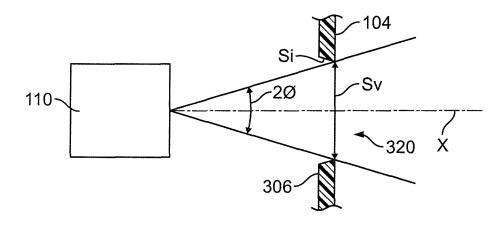


FIG. 10

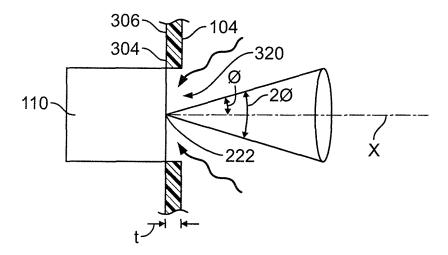


FIG. 11

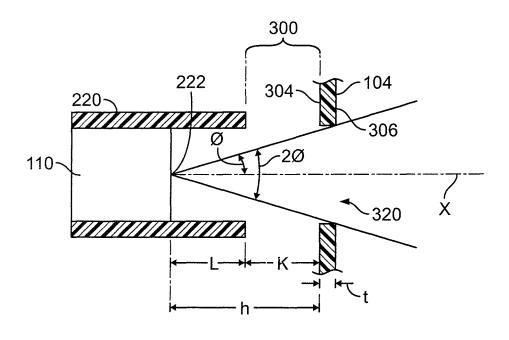


FIG. 12

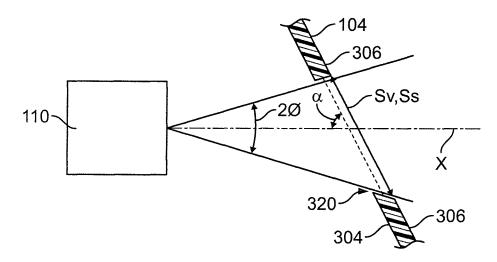


FIG. 13

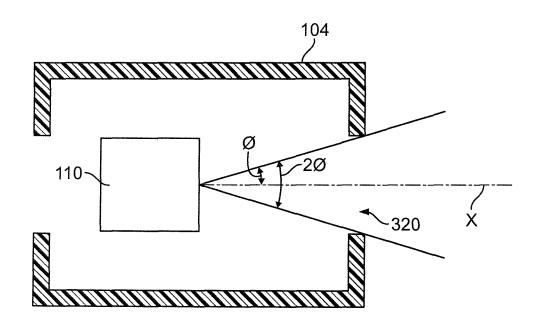


FIG. 14

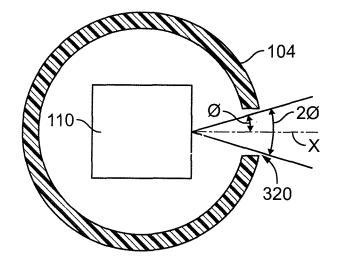


FIG. 15

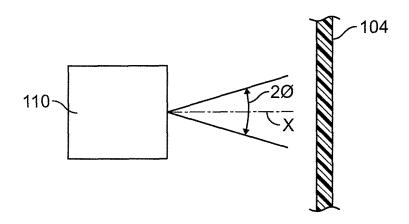


FIG. 16

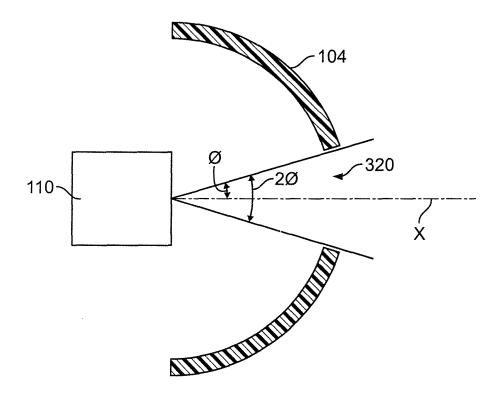


FIG. 17

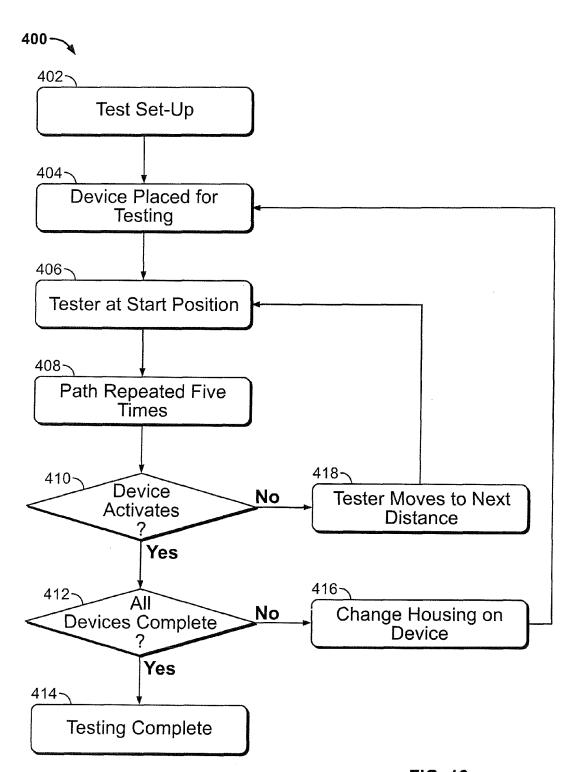
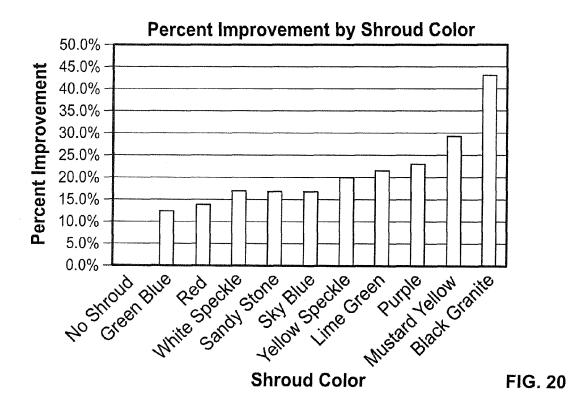
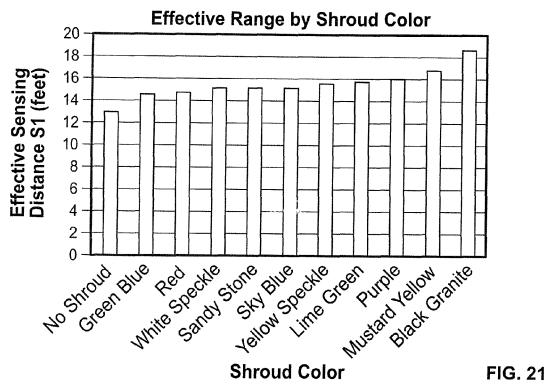




FIG. 18

				Col	or of Sh	roud in	Color of Shroud in Dispensing System	ng Syst	em		
	No Shroud	Green Blue	Red	White Speckle	Sandy Stone	Sky Blue	Yellow Lime Speckle Green Purple	Lime Green	Purple	Mustard Yellow	Black Granite
_	13	14	15	15	15	15	16	17	16	17	18
2	13	15	15	16	16	15	16	15	16	17	18
က	13	14	14	15	15	15	16	16	16	16	19
4	13	15	15	15	15	15	15	15	16	17	19
Ŋ	13	15	15	15	15	16	15	16	16	17	19
Average	13	14.6	14.8	15.2	15.2	15.2	15.6	15.8	16	16.8	18.6
Improvement Over Baseline (%)	%0.0	12.3%	13.8%	16.9%	16.9%	16.9%	20.0% 21.5% 23.1%	21.5%	23.1%	29.2%	43.1%

			Data Nor	malized	for Color	Impac	t		
Green Blue	Red	White Speckle	Sandy Stone		Yellow Speckle			Mustard Yellow	
0.0%	1.5%	4.6%	4.6%	4.6%	7.7%	9.2%	10.8%	16.9%	30.8%

FIG. 22

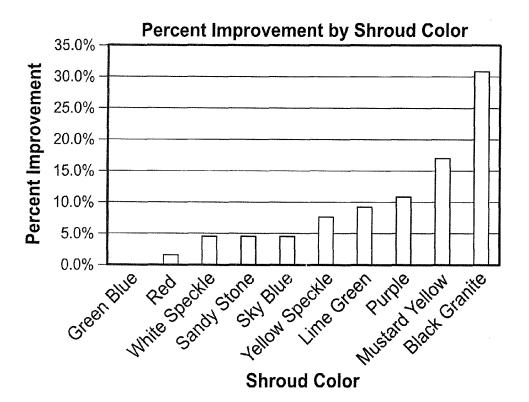
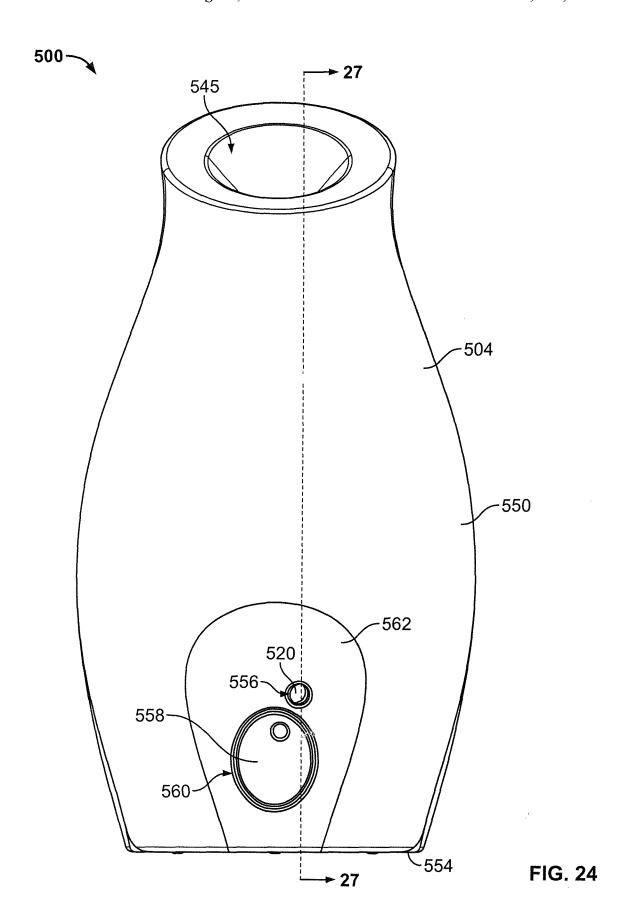



FIG. 23

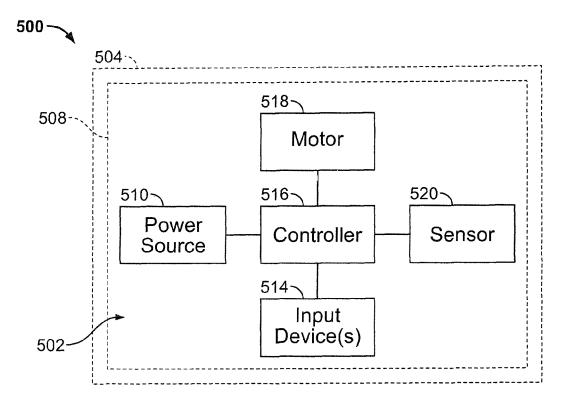


FIG. 25

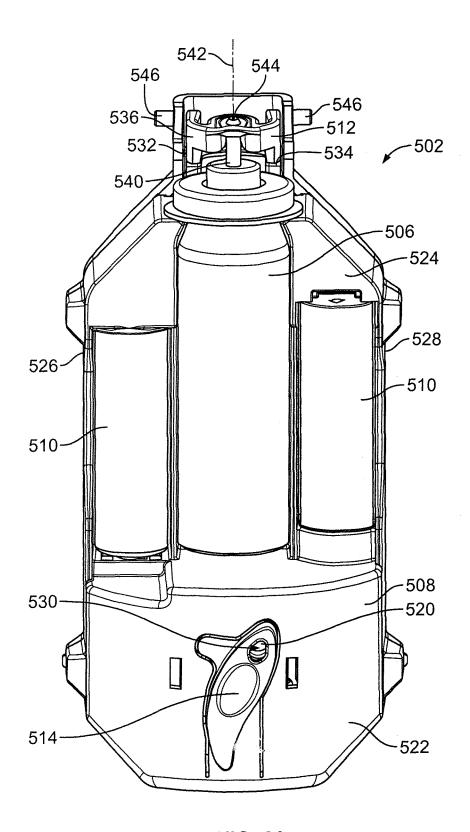


FIG. 26

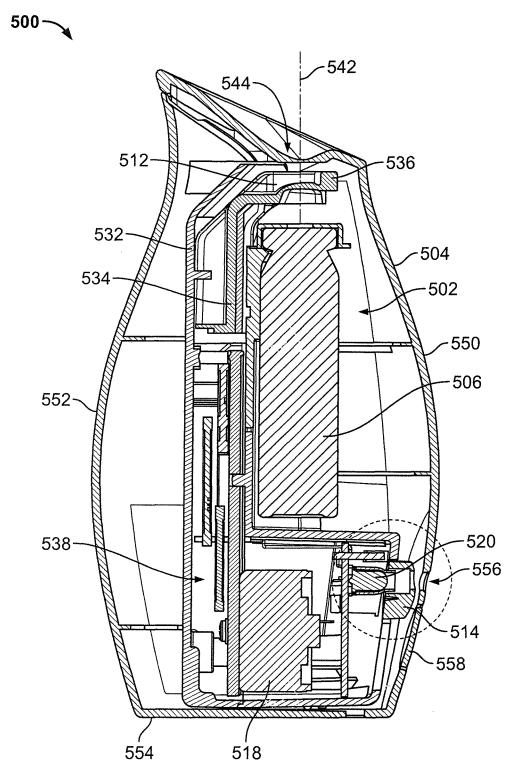


FIG. 27

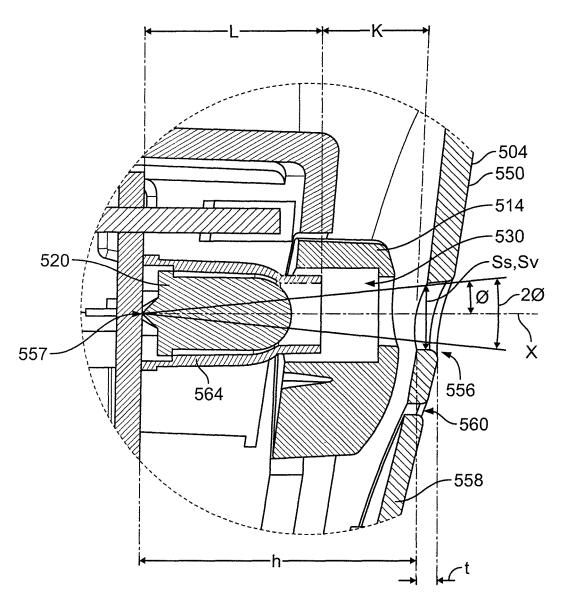


FIG. 28

DISPENSING SYSTEMS WITH IMPROVED SENSING CAPABILITIES

CROSS REFERENCE TO RELATED APPLICATIONS

Not applicable

REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

SEQUENTIAL LISTING

Not applicable

BACKGROUND OF THE INVENTION

1. Field of the Background

The present disclosure relates to dispensing systems having improved sensing capabilities.

2. Description of the Background

Diffusion devices or dispensers are used to dispense volatile materials, such as fragrances, deodorants, insecticides, 25 insect repellants, and the like from one or more containers. Many of these dispensers are active dispensers, which may include fans and/or heaters to aid in the dispersal of volatile materials. Other dispensers actuate a valve stem of an aerosol container to dispense a volatile material contained therein, or 30 utilize an ultrasonic transducer to break up a liquid volatile material into droplets that are ejected from the dispenser. Yet other dispensers include any combination of the above or any other known type of active diffusion device.

Traditionally, these active dispensers are standalone 35 devices that release product into a space in response to manual input, a lapsing of a timed interval, or sensory input, e.g., spraying an air freshener within a room or a pest control device within a barn. These dispensers are generally kept "out of sight" of users by placing them in areas of a room or space 40 that are utilized less frequently by users or that provide the ability to "hide" or otherwise diminish the impact of the dispenser on the room or space in which it is located. In these circumstances, the placement of the dispensers in sub-optimal areas of a room or space causes the dispensers to be less 45 effectual in terms of their ability to effectively disperse a volatile material into the room or space.

Further, many of these prior art dispensers utilize sensors to initiate various pre-programmed or user initiated operational sequences, as well as to provide instant dispensing upon the 50 detection of sensory input. In these prior art dispensers a sensor with a single sensing capability, e.g., sensing whether a level of light is diminished within a certain period of time over a certain distance that is indicative of motion, is used regardless of whether the dispenser is placed in a bathroom or 55 an auditorium. As such, the sensors may not always efficiently sense the presence of people in the desired space. For example, if a dispenser with a sensor having the capability of detecting input at a distance of 20 ft is placed in a typical in-home bathroom, the dispenser may incorrectly detect the 60 presence of a user passing the dispenser outside of the bathroom, which may result in an inadvertent activation of the dispenser. Conversely, if a dispenser utilizing a sensor with a sensing range of 5 ft is used in a large room, the sensor may not effectively detect the presence of a user in the room, 65 unless the user happened to pass in close proximity to the dispenser. Accordingly, these prior art dispensers do not

2

include sensors that are efficiently and/or optimally responsive to the environment in which they are located or according to user preferences.

Presently there is a need for dispensers that are intended to be left in "plain view" of a user and otherwise positioned prominently within a room or space, i.e., not hidden or otherwise intentionally obstructed. Further, there is a need for dispensing systems that include efficient sensors, which provide for improved sensing capabilities. Additionally, the sensing systems should be efficient and in some cases capable of being adjusted in response to the space they are located in and according to user preferences. As such, it is an object of the present disclosure to address the disadvantages of the prior art and to fulfill this unmet need.

SUMMARY OF THE INVENTION

According to one embodiment, a dispensing system includes a dispenser, at least one sensor, and a shroud including at least one aperture. A virtual shield is provided between the sensor and the shroud to reduce background noise.

According to another embodiment, a dispensing system includes a dispenser having at least one sensor. A shroud includes at least one aperture spaced from the at least one sensor. An aperture performance factor \mathbf{S}_A is defined by the ratio $\mathbf{S}_A = \mathbf{S}_S/\mathbf{S}_V$ and $\mathbf{S}_A \leq 1$.

According to a different embodiment, a dispensing system includes a dispenser, at least one sensor, and a shroud including at least one aperture. The shroud is light reflective and includes a colorant that provides a reduction in background noise of at least 10% when compared to the omission of the shroud.

Other aspects and advantages will become apparent upon consideration of the following detailed description and the attached drawings, in which like elements are assigned like reference numerals.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a dispensing system;

FIGS. **2**A-D are schematic representations of the dispensing system of FIG. **1** utilizing various dispensers;

FIG. 3 is a schematic view of a sensor having a field of view:

FIG. 4 is a schematic, partial sectional view of a sensor and lens with a field of view:

FIG. 4A is an alternative embodiment of the sensor of FIG. 4 with a modified field of view;

FIG. 5 is a schematic, partial sectional view of a sensor similar to those described in FIGS. 3, 4, and 4A shown with a virtual shield;

FIGS. 6-17 illustrate schematic, partial sectional views of sensors within the dispensing system of FIG. 1;

FIG. **18** is a flowchart that illustrates a testing method for determining improvements to the sensing capabilities of a dispensing system;

FIGS. 19-21 are charts that illustrate the results obtained from the test shown in FIG. 18;

FIGS. 22 and 23 are charts illustrating the results obtained from the test of FIG. 18 normalized for color impact;

FIG. **24** is a front elevational view of an exemplary embodiment of a dispensing system;

FIG. 25 is a schematic representation of the dispensing system of FIG. 24;

FIG. 26 is a front isometric view of a dispenser for use in the dispensing system of FIG. 24;

FIG. 27 is a cross-sectional view taken along the line 27-27 of FIG. 24: and

FIG. 28 is an enlarged, partial cross-sectional view of FIG. 27.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 generally depicts a dispensing system 100. The dispensing system 100 includes a dispenser 102 disposed within a shroud or housing 104. The dispenser 102 includes a 10 controller 106, a power source 108, one or more sensors 110, and an actuation or dispensing mechanism 112. The dispenser 102 may also include one or more input devices 114 such as switches, dials, keypads, pushbuttons, etc. An example of an input device 114 may be a switch, which allows the user to 1 turn on the dispenser 102 and/or a pushbutton, which allows the user to initiate a dispense mode to release product from one or more containers 120 (see FIGS. 2A-2D). The power source 108 supplies power to the controller 106 and to other components. The controller 106 is further coupled to the other 20 components and executes programming to control the operation thereof. The power source 108 may include one or more plugs for insertion into a conventional electrical outlet or a corded plug. Additionally, or alternatively, the power source 108 may be an internal power source such as one or more 25

The dispenser 102 is configured to discharge product from one or more containers upon the occurrence of a particular condition. The condition could be the manual activation of the dispenser or the automatic activation of the dispenser 102 in 30 response to an elapsed time interval or signal from the sensor 110. The product may include a fragrance, deodorizer, insecticide, insect repellent, or other product, product formulation, or volatile material. For example, the fluid may comprise OUST®, an air and carpet sanitizer for household, commer- 35 cial, and institutional use, or GLADE®, a household deodorant, both sold by S. C. Johnson and Son, Inc., of Racine, Wis. The fluid may also comprise other actives, such as sanitizers, air and/or fabric fresheners, cleaners, odor eliminators, mold or mildew inhibitors, insect repellents, and the like, or that 40 have aroma-therapeutic properties. The dispenser 102 is therefore adapted to dispense any number of different products. In embodiments that utilize more than one container, the fluid or product within the containers may be the same, similar, or different.

The sensor 110 in the present embodiment may be a photocell light sensor or phototransistor. In one embodiment, changes in the detected level of light by the sensor may be construed as detected motion. The sensor may be the sensor described in Carpenter et al. U.S. patent application Ser. No. 50 11/725,402. However, any other type of detector or sensor may be utilized for detecting sensory input, e.g., a passive infrared or pyroelectric motion sensor, an infrared reflective motion sensor, an ultrasonic motion sensor, or a radar or microwave radio motion sensor. In some embodiments more 55 than one sensor 110 may be used. It is anticipated that utilization of the sensor 110 (or multiple sensors) will allow for the detection of sensory input, which may be utilized to provide one or more of the powering on or off of the system, the initiation of a pre-programmed timed sequence of dis- 60 pensing, the initiation of a sequence that comprises one or more dispensing periods between one or more non-dispensing periods, the initiation of a sequence that includes a continual dispensing sequence, the initiation of an immediate dispensing of a product, the initiation of the dispensing of a 65 product after a specified or non-specified delay, the initiation of a dispensing sequence characterized by dispensing a prod4

uct in response to one or more of a timed interval, sensory input, or manual actuation after the initial detection of sensory input, and the initiation of one or more previously noted actions in connection with a system having a single container, two containers, three containers, or any other number of additional containers 120.

FIGS. 2A-D illustrate various embodiments of dispensers for use in the dispensing system 100. Referring now to FIG. 2A, in one embodiment the dispenser 102A is a conventional electronic dispenser that utilizes one or more actuation mechanisms 112 to spray product from a container 120 such as an aerosol container, whether metered or non-metered, and pump-type sprayers, whether pre-compression or non precompression pump-type sprayers. Conventional actuation mechanisms may include, but are not limited to, mechanically driven means, such as armatures, levers, linkages, cams, etc., that depress, tilt, or otherwise activate a valve stem or pump of a container by direct interaction with the valve stem or pump, through indirect communication with the valve stem or pump, and/or through physical interaction with the container, i.e., lifting, pushing, tilting, lowering, or otherwise deflecting the container to effect the depression or tilting of the valve stem or pump. It is also contemplated that solenoid actuators, bi-metallic actuators, muscle wire actuators, piezo actuators, or any other means may be utilized to effect spraying of an aerosol or pump-type container. Further, it is also contemplated that other dispensing and actuation mechanisms 112 may be utilized, such as those used in connection with nebulizers or venturi sprayers. Still further, the dispenser 102A may include a second actuation mechanism 112 to dispense product from a second container 120. The dispenser 102A may utilize a product or fluid provided within a container or reservoir 120 that is pressurized or non-pressurized. The sensor 110 is disposed about a perimeter of a housing 140 of the dispenser 102A to provide a sensory field of view. In one embodiment two sensors are provided, in a different embodiment three sensors are provided, in yet a different embodiment four sensors are provided, in still a further embodiment five sensors are provided. It is contemplated that any number of sensors 110 may be used with the dispenser 102A.

In a different embodiment illustrated in FIG. 2B, the illustrated dispenser 102B is a conventional oil or product diffuser. It is contemplated that the dispensing or diffusing of a product from the container 120 may be realized by one or more dispensing mechanisms 112 such as activation means that include heating a container, heating a wick extending from or into the container, heating an area adjacent a wick and/or container, running a fan adjacent an aperture of a container or a wick extending from a container, running a fan within a housing to assist in dispersal of a product, activating a piezo-electric plate adjacent a wick to volatize a fluid thereon, opening a window or otherwise removing an obstruction from an aperture to assist in the dispersal or diffusion of product from the dispenser 102B, or any other known means for diffusing. Further, the dispenser 102B may be adapted to include a second activation means 112 to dispense or diffuse product from a second container or reservoir 120. The sensor 110 is disposed about a perimeter of a housing 150 of the dispenser 102B to provide a sensory field of view. In one embodiment two sensors are provided, in a different embodiment three sensors are provided, in yet a different embodiment four sensors are provides, in still a further embodiment five sensors are provided. It is contemplated that any number of sensors 110 may be used with the dispenser 102B.

FIG. 2C illustrates a further embodiment of a dispenser 102C that has a dispensing mechanism 112 such as a conventional diffuser that utilizes a cartridge or reservoir 120 that holds one or more of a product, volatile, or active laden gel or liquid. Alternatively, the diffuser 102C may include two cartridges or reservoirs 120, three cartridges or reservoirs, or any number of additional cartridges or reservoirs. It is contemplated that diffusion may be realized by one or more dispensing mechanisms 112 having activation means that provide for one or more of heating a cartridge or reservoir, heating an area adjacent a cartridge or reservoir, running a fan adjacent an aperture or vapor permeable membrane of a cartridge or reservoir, running a fan within a housing to assist in dispersal of a product, rotating or otherwise moving a cartridge or 15 reservoir, opening a window or otherwise removing an obstruction from an aperture or opening to assist in the dispersal of product from the housing, or any other known means of diffusing. The sensor 110 is disposed about a perimeter of a housing **160** of the dispenser **102**C to provide a sensory field 20 of view. In one embodiment two sensors are provided, in a different embodiment three sensors are provided, in yet a different embodiment four sensors are provides, in still a further embodiment five sensors are provided. It is contemplated that any number of sensors 110 may be used with the 25 dispenser 102C.

In still another embodiment, shown in FIG. 2D, a dispenser 102D is a system that includes one or more candles, fragrance blocks, wax melts, or products 120, whether solid or gel, that allow for the diffusion of an active or volatile through the 30 melting thereof (hereinafter referred to collectively as "candles"), provided within a housing 170 or on a base. The housing 170 may include one or more candles, e.g., two candles, three candles, four candles, five candles, or any additional number of candles. The sensor 110 is disposed 35 about a perimeter of the housing 170 of the dispenser 102D to provide a sensory field of view. In one embodiment two sensors are provided, in a different embodiment three sensors are provided, in yet a different embodiment four sensors are provides, in still a further embodiment five sensors are pro- 40 vided. It is contemplated that any number of sensors 110 may be used with the dispenser 102D. The one or more sensors 110 allow for the detection of sensory input, which may be utilized to provide the powering on or off of the dispensing mechanism 112, which in the present embodiment comprises 45 one or more heater(s).

Any of the dispensers 102, 102A-D (hereinafter collectively referred to as 102) discussed above may be enclosed within a shroud or housing 104, to create a more aesthetically pleasing dispensing system 100, which a user will leave in 50 "plain view" and otherwise positioned prominently within a room or space, i.e., not hidden or otherwise intentionally obstructed. By placing the dispensing system 100 in plain view, the sensor or sensors 110 (hereinafter individually and collectively referred to as 110) of the dispensing system 100 55 will be more effective at sensing the presence of persons, objects, or an environmental condition within the space, i.e., the sensing capabilities of the sensor will be improved. The shroud 104 may be constructed from any suitable material, such as plastic, metal, glass, or combinations thereof. Addi- 60 tionally, the materials may include combinations of manufactured, natural, and recycled or reclaimed materials. The shroud 104 may be any shape or any color known to those skilled in the art. In some cases, the materials selected to construct the shroud 104 are configured to approximate natu- 65 rally occurring substances, such as wood, stone, paper, or rock, or combinations thereof.

6

As shown in FIG. 3, the sensor 110 is disposed on or adjacent to a perimeter of the dispenser 102, or otherwise within the dispenser 102. The sensor 110 has a field of view characterized as a right circular cone having a half angle Ø off a center axis X thereof, which provides for a total viewing angle or sensory field of view of 2Ø. It is contemplated that any sensor that detects light along any portion of the visible or non-visible spectrum may be characterized as having such a viewing angle or sensory field of view. In certain instances, various industry standards or optimal viewing angles will be ascribed to various sensors, which are contemplated to be synonymous with the above noted description. Further, to the extent that such an industry standard does not exist (or that it conforms to the below noted definition), the viewing angle shall be defined as to where the sensitivity drops to 50% of the on axis sensitivity. In one particular non-exclusive embodiment, the sensor 110 is a photodiode that includes a viewing angle Ø of about 10 degrees and a sensory field of view 2Ø of about 20 degrees. The sensitivity of the photodiode drops to 50% of the on X axis sensitivity at about 10 degrees off the X axis. In other embodiments, the sensory field of view 2Ø is between about 10 degrees to about 180 degrees, more preferably between about 10 degrees to about 90 degrees, and most preferably between about 10 degrees to about 45 degrees.

The sensor 110 has the ability to detect sensory input over a distance S1, in which the sensor is effective in detecting the sensory input or a change therein. For example, the sensory input may be a detected level of light or any change therein when utilizing a photodiode. A change in the detected level of light may be dependent on a period of time in which the level of light was collected or independent of any temporal restriction. In one embodiment, a detected change in light intensity within a time period P is indicative of motion, whereas a change in light intensity less than or greater than P is not.

It is understood that either one or more of the sensor(s) 110 or controller 106 may process any sensory input. The intended processing in either the sensor 110 or controller 106 is applicable to all embodiments disclosed herein, regardless of how initially characterized.

The sensing efficiency of the sensor 110 over the sensing distance S1 is dependent on the ratio between the signal strength of the sensory input and any detected background noise 200, i.e., sensory input outside the field of view $2\emptyset$ that reaches the sensor 110. In the present embodiment, the background noise 200 would comprise light outside the field of view $2\emptyset$. As the amount of background noise 200 reaching the sensor 110 is reduced, the sensing capabilities of the sensor will improve and the sensor will be able to detect sensory input at a greater sensing distance S1 away from the sensor. In connection with the present embodiment, by decreasing the amount of light reaching the sensor 110 outside of the optimal field of view $2\emptyset$, the sensing capabilities of the sensor 110 will be improved to better detect sensory input, i.e., motion.

Referring to FIG. 4, a lens cover 220 such as a cylindrical tube or housing may be disposed around the sensor 110. In the present embodiment, the lens cover 220 protrudes a distance L from a front focal point 222 of the sensory field of view of the sensor 110. The lens cover 220 operates as a sensory shield to reduce and/or prevent interference with the sensor 110 by reducing and/or preventing background noise 200 from reaching the sensor. Further, with reference to FIG. 4A, an alternative embodiment is shown in which the length L of the lens cover 220 extends beyond the sensor 110 to a point where the sensory field of view is reduced to <2Ø, thereby restricting the field of view of the sensor 110 to alter the sensing capabilities of the sensor.

Turning to FIG. 5, the sensor 110 depicted in FIGS. 3, 4 (with a lens cover 220), and/or 4A (with a lens cover 220 and restricted view) may be used in conjunction with a shroud or housing 104. The shroud 104 of the present embodiments assists in the creation of a virtual shield 300 between the 5 shroud 104 and the sensor 110 to reduce background noise. More specifically, the virtual shield 300 is provided in a space or gap between a distal or input end, i.e., the focal point 222, of the sensor 110 and an inner side 304 of a sidewall 306 of the shroud 104. With reference to FIG. 5, it may be seen that the inner side 304 of the shroud 104 is coincident with at least one aperture 320. The aperture 320 of the present embodiment is shown as devoid of any material, i.e., an opening, but it is contemplated that the aperture could include a glass, or plastic, or other light transmissive material extending thereacross. 15 Preferably, the central or center axis X of the sensor 110 extends through a portion of the aperture 320. In one preferred embodiment, a center C of the aperture 320 is aligned with the axis X. The virtual shield 300 provides for an increase in the sensing capabilities of the dispenser 102 by filtering out back- 20 ground noise that would otherwise reach the sensor 110. In connection with the present embodiment, background light noise is diminished through use of the virtual shield 300 to increase the sensing capabilities of the sensor 110. Further, placement of the dispenser 102 within the shroud 104 will 25 encourage users to leave the dispensing system 100 in plain sight, thereby increasing the efficiency of the sensor 110 in yet another way.

Referring still to FIG. **5**, the dispenser **102** and the sensor **110** are shown disposed adjacent to a shroud **104**. While the 30 shroud **104** is illustrated as a partial sectional view of a sidewall, the shroud **104** may comprise any structure that effects some form of reduction in sensory input background noise. In one embodiment, the shroud **104** comprises a discrete wall portion adjacent the sensor **110**. In other embodiments, the 35 shroud **104** partially or completely circumscribes the dispenser **102** within the shroud.

The sensor 110 is disposed within the shroud 104 at a distance h measured along the center axis X from the inner side 304 of the shroud 104 to a front focal point 222 of the 40 field of view 2Ø of the sensor 110. Thus, in this embodiment, the virtual shield 300 created by the shroud 104 is equal to the distance h. In the embodiments that utilize lenses such as those shown in FIGS. 4 and 4A, the virtual shield 300 would have a distance of h-L. The aperture 320 is provided in the 45 sidewall 306 of the shroud 104 to allow the sensor 110 to detect sensory input outside of the dispensing system 100. The size of the aperture 320 is preferably large enough to not significantly impede the sensor's 110 field of view while not being too large that excessive background noise is able to 50 reach the sensor. In one embodiment, the aperture 320 is circular in shape and has its center C on the center axis X of the sensor 110. In this embodiment, the preferred diameter D of the aperture 320 is dependent on the distance the sensor 110 is from the aperture and the viewing angle Ø. The equation for determining the diameter D of the aperture is:

$D=2(h*(\tan \emptyset))$

By sizing the diameter D of the aperture **320** in this manner, increased efficiencies may be realized within the dispensing 60 system **100** through the elimination of sensory input background noise that would otherwise be received through a wider aperture. In the present embodiment the aperture **320** is a circle that is perpendicular to the center axis X of the sensor **110**. However, it is contemplated that the aperture **320** may be 65 any shape and may be oriented at various angles with respect to the center axis X.

8

The performance of the aperture **320** can be characterized as the amount of background noise that the aperture excludes. Any sensory input that is outside the field of view $2\emptyset$ of the sensor **110** is background noise and is reducing the effective performance of the sensor. An aperture performance factor S_A is the ratio of a virtual surface area represented by the intersection of a sensor field of view S_V and a surface area defined by the aperture intersection of the shroud surface S_S . As such:

$$S_A = S_S / S_V$$

If the two surface areas $S_{\mathcal{F}}$ and $S_{\mathcal{S}}$ are coincident, the aperture performance factor $S_{\mathcal{A}}$ equals 1.0 (see FIG. 5). The closer the aperture performance factor $S_{\mathcal{A}}$ is to 1 the more efficient the aperture is because it allows for the entire field of view $2\emptyset$ of the sensor 110 to pass through the aperture 320, while limiting the amount of noise reaching the sensor. Thus, an aperture performance factor SA of about 1 provides for optimal sensing capabilities and performance.

Referring now to FIG. 6, the size of the aperture 320 is reduced, such that portions of the sidewall 306 defining the aperture 320 block part of the field of view $2\emptyset$. In this case the surface area S_{ν} of the field of view of the sensor 110 intersecting the housing 104 is larger than the surface area S_{S} of the aperture 320 intersecting the shroud 104 at the inner side 304 of the sidewall 306. In such cases, the aperture performance factor $S_{\mathcal{A}}$ is less than one. When the aperture 320 is smaller than the field of view $2\emptyset$ of the sensor 110, the field of view $2\emptyset$ subsumes the aperture such that reduced and/or no background noise passes through the aperture to the dispenser. Further, it is possible to tune the sensing distance S1 of the sensor 110 by decreasing the size of the aperture 320, thereby partially blocking a portion of the field of view $2\emptyset$ of the sensor.

As shown in FIG. 7, in some embodiments the size of the aperture 320 is larger than the field of view $2\emptyset$ of the sensor 110 such that gaps 330 exist between the field of view $2\emptyset$ of the sensor and the portions of the sidewall 306 defining the aperture 320. In this case, the field of view surface area S_V of the sensor 110 intersecting the shroud 104 is smaller than the surface area S_S of the aperture 320 in the shroud 104, which provides an aperture performance S_A greater than 1. When the aperture performance S_A is greater than 1, the aperture is not properly shielding the sensor 110, i.e., more background noise is reaching the sensor 110, thereby decreasing the performance of the sensor.

In an alternative embodiment, in which one example is depicted in FIG. 8, the sensor 110 and the aperture 320 have distinctly different shapes. For example, FIG. 8 depicts the aperture 320 as having a triangular cross-section and the field of view 2Ø of the sensor as having a circular cross-section. However, so long as the surface area S_{ν} of the field of view of the sensor 110 completely subsumes the surface area S_{S} of the aperture 320 in the shroud 104 sidewall, the aperture performance S_{A} would be optimized to be ≤ 1 . In other embodiments, one or more of the aperture 320 and the field of view 2Ø of the sensor 110 may have any geometric shape, including a square, a rectangle, a circle, an ellipse, an oval, a polygon, a star shape, etc.

Referring now to FIGS. 9 and 10, it may be seen how the geometry of the aperture 320 cross-section can effect the aperture performance factor S_A . Specifically, if an inner surface Si of the aperture 320 is coincident with the surface area S_V defined by the field of view 20 of the sensor 110, the aperture performance factor S_A is equal to 1, regardless of where along the inner surface Si the measurement is taken (see FIG. 9). In contrast, if the surface Si is not continually coincident throughout its length with the surface area Sv, then

the point at which the S_{ν} first intersects the surface Si must be determined and the aperture performance factor $S_{\mathcal{A}}$ calculated from there (see FIG. 10). In this scenario, the aperture performance factor will be ≤ 1 . It is contemplated that the surface Si of the aperture could have a linear or non-linear shape. 5 However, insofar as the S_{ν} first intersects the inner side 304 of the sidewall 306 or is coextensive with, or intersects with, the surface Si, then the aperture performance factor will be ≤ 1 .

It is contemplated that the portion of the shroud 104 in which the aperture 320 is disposed may be removable from the remainder of the shroud 104 or that the entire shroud may be removable from the dispenser. Preferably, a different shroud portion or shroud 104 may be provided with a differently sized aperture 320 and/or an aperture having a different inner surface Si geometry and/or thickness t. As previously 15 noted, modifying the size of the aperture 320 alters the sensing range S1 of the dispensing system 100.

It is beneficial to be able to adjust the sensing distance S1 of the sensor 110 so that the dispensing system 100 can be optimized for the space in which it is located or according to 20 user preferences. For example, if a dispenser 102 with a sensor 110 having the capability of detecting input at a distance of 20 ft is placed in a typical in-home bathroom, the dispenser may incorrectly detect the presence of a user passing the dispenser 102 outside of the bathroom, which may 25 result in an inadvertent activation of the dispenser. Additionally, the sensing distance S1 can be reduced for dispensing systems 100 located within a vehicle, such that movement outside of the vehicle does not cause the sensor 110 to inadvertently register the sensory input. Conversely, if a dispenser 30 102 utilizing a sensor 110 with a sensing range of 5 ft is used in a large room, the sensor may not effectively detect the presence of a user in the room, unless the user happened to pass in close proximity to the dispenser. Thus, it is beneficial to adjust the sensing distance S1 according to the space in 35 which the dispensing system 100 is located to most efficiently detect sensory input.

Alternatively, as shown in FIG. 11, if it is desired to reduce the sensing capabilities of the dispenser 102, such that the sensor 110 has a less efficient sensing range or distance S1, 40 the sensor may be located closer to the sidewall 306. In the present embodiment, the sensor 110 is shown as being placed directly adjacent the inner side 304. As the distance h between the sensor and the sidewall decreases, to the point depicted in FIG. 11 where the sensor 110 is directly adjacent the sidewall 45 306, the amount of background noise reaching the sensor increases, thereby reducing the sensing capabilities of the sensor.

Referring now to FIG. 12, in an alternative embodiment the lens cover 220 is not omitted. Rather, the sensor 110 with the 50 lens cover 220 is disposed within the shroud 104. As discussed above, the lens cover 220 extends a distance L past the front focal point 222 of the field of view 20 of the sensor 110. A distal end of the lens cover 220 may be disposed adjacent to the inner side 304 of the sidewall 306 defining the aperture 53 320, or the distal end of the lens cover 220 may be located a distance K from the inner side 304. As the distance K increases a virtual shield 300 is formed between the distal end of the lens cover 220 and the inner side 304 of the sidewall 306 of the shroud 104.

In an alternative embodiment shown in FIG. 13, the sidewall 306 of the shroud 104 is not perpendicular to the center axis X of the sensor 110, but rather is disposed at an angle α from the center axis X. As shown in FIG. 13, when the shroud 104 sidewall 306 is angled the surface area Sv of the field of view 20 of the sensor defined by the intersection with the shroud 104 is also disposed at an angle α from the center axis

10

X. Additionally, the surface area Ss of the aperture in the shroud is also disposed at an angle α . So long as the ratio between S_S and S_V is ≤ 1 the dispensing system will achieve its greatest sensing capabilities.

The shroud 104 may comprise any shape capable of enclosing the dispenser 102 therein. However, while it is preferred to provide a shroud 104 that fully, or substantially fully, encapsulates the dispenser 102 (see FIGS. 14 and 15), it is contemplated that variations may be utilized. Indeed, the shroud 104 may be fashioned to only partially cover the dispenser 102, insofar as the shroud 104 still exhibits sensory input noise reduction to the sensor 110. For example, the shroud 104 may comprise a plate that is provided adjacent the sensor 110 (see FIG. 16). Alternatively, the shroud 104 may comprise a curved plate that provides for substantially greater noise reduction and that extends to a point perpendicular to the axis X of the sensor 110 (see FIG. 17).

Additional improvements to the sensing capabilities of the dispensers 102 can be achieved by changing the properties of the shroud 104 itself. While the shroud 104 provides a virtual filtering effect between the aperture 320 and the sensor 110, it was also determined that the material comprising the shroud 104 had a substantial effect on the relative background noise as well. Specifically, it was determined that background noise was reaching the sensor 110 because of the relative reflective nature of the shroud 104 adjacent the aperture 320. Conventional materials used in the manufacturing of the shroud include thermoplastics, such as polyethylenes, polypropylenes, polyesters, etc. While such materials can have significant reflective properties, manufacturing costs and consumer desires typically require that such materials be used to manufacture dispensing systems. With these constraints, the elimination of background noise while still utilizing preferred light reflective materials poses a challenge to effective sensory perception. It has been surprisingly found that certain modifications to colorants used with various shrouds 104 will realize a reduction in background noise and increased sensory effectiveness.

Reflectance is dependent on the surface characteristics, chemical composition, and physical structure of the material. In the present embodiment, the amount of light that is either absorbed by the shroud 104 or that is reflected off of the shroud depends on the chemical composition or microstructure of the material. As such, the dyes used during the molding or manufacture of the shroud 104 will change the chemical composition of the shroud, which will in turn change the relative reflectance properties of the shroud. Thus, the colorant applied to the shroud 104 significantly impacts the sensing capabilities of the dispenser including the sensing distance S1 of the sensor 110.

A test 400, shown in the flow chart of FIG. 18, may be conducted to collect data to determine the improvements to the sensing capabilities of dispensers in relation to the addition of a shroud and the addition of shrouds of various colors. The first step of the test represented as block 402 is the setting up of the test environment. The test is performed in a room having a constant lighting of 380 lux and an uninterrupted target area demarcated by distance lines perpendicular to a center axis X of the sensor and provided at distances of between 12 to 20 feet from the sensor. Preferably, the distance lines are provided every foot, however, the distance lines may be separated by any interval. The room is large enough so that the distance lines may completely traverse the viewing angle 2Ø of the sensor. The first test is run with a conventional prior art dispenser without a shroud to obtain a baseline in sensing characteristics.

The dispenser is then placed within the room (block 404) on a table located at a height of 3 feet above the floor. A tester will then position himself at an end of the distance line the farthest from the dispenser (block 406). Thereafter, the tester walks the length of the distance line and the dispenser is observed to see if the sensor registers any change in light intensity, i.e., movement of the tester. The tester walks the first distance line five times and the observations are recorded (see block 408).

Upon completion of the five observations, a query is undertaken (see block 410) to determine whether the sensor has registered the tester. In the present example, the distance line the tester was walking on when the dispenser sensed the presence of the tester within the viewing angle is recorded as the sensing distance. If registration has occurred at least once, the tester moves to a query block 412 where a determination is made if all of the devices have been tested. If all the devices have been tested, the test 400 is complete (see block 414). If all of the devices have not been tested, the device is removed 20 from the housing and put within a different housing (see block **416**) and the new device is tested starting at block **404**. The same device is used in each differently colored shroud. If the query undertaken at block 410 results in no registration having occurred, the tester moves to the next distance (see block 25 of changing the lux level to the sensing capabilities of dis-**418**) and starts the procedure at block **406**.

The data collected from the test 400 is shown in FIGS. 19-23. As illustrated in FIGS. 19-21, the sensing capabilities of a dispenser without a shroud is a sensing distance S1 of 13 feet. The sensing distance S1 of the dispenser is greatly 30 improved by adding a shroud of any color around the dispenser. The improved capabilities translate to the sensor being effective for sensing distances of about 14 ft to about 20 ft. Alternatively, the improved capabilities may be generally characterized as an about 7% to about 55% improvement over 35 the sensing distance S1 of dispensers not having a shroud.

FIG. 22 shows the data collected during the test 400 normalized to show how the specific shroud color impacts the overall sensing capabilities of the dispensing system. All of the dispensing systems tested included shrouds having the 40 same sized apertures, structural design, and materials. The only difference in the dispensing systems tested was the color of the shroud enclosing the dispenser. As such, the only difference in the chemical compositions of the various shrouds tested were the dyes used to color the housing. Each color has 45 a specific chemical composition unique to a particular dye. Many materials are selective in their absorption of white light frequencies. The frequencies of the spectrum which are not absorbed are either reflected or transmitted.

As shown in the chart and graph of FIGS. 22 and 23, the 50 shroud with the best sensing capabilities was the black granite colored shroud. The dispensing system with the black granite colored shroud showed a 30.8% improvement in sensor performance from the worst performing dispensing system, i.e., the dispensing system with a green blue colored shroud. 55 Indeed, the testing made clear that several colors resulted in a reduction in background noise of at least 10% when compared to not using a shroud at all. Further, in a specific embodiment at least a 30% reduction in background noise was realized in comparison to not having a shroud.

The results of the testing illustrate how the colored shrouds with greater reflectivity characteristics realized diminished sensor effectiveness in comparison with colored shrouds with less reflective characteristics, i.e., shrouds that absorbed more light, such as the black granite embodiment. The tests suggest 65 that significant background noise is created when light is reflected adjacent the aperture in shrouds that are less light

12

absorptive, which negatively impacts the sensors ability to detect at greater sensing distances.

A test was also conducted to see the relative effects of changing the lux level to the sensing capabilities of dispensers in connection with the addition of a shroud. A sandy stone colored dispenser without a shroud was placed under lights that were increased in intensity from 8000 lux to 15,000 lux. The procedure was then repeated for a dispensing system with a sandy colored shroud. The results of the testing procedure, shown below in Table 1, illustrate that the dispensers with shrouds have an increased sensor effectiveness over the same colored dispenser without the shroud.

TABLE 1

		Maximum Detection D	istance (feet)
	Lux	Sandy Stone (No Shroud)	Sandy Stone (with Shroud)
_	8000	2.7	6.7
)	10000	1.8	5.3
	12000	0.7	3.9
	15000	0.1	2.5

An additional test was conducted to see the relative effects pensing systems with different colored shrouds. Several units were placed under lights that were increased in intensity from 8000 lux to 15,000 lux. It was theorized that the relatively light colored shrouds would reflect significantly more light with this testing protocol adjacent the apertures, which would result in decreased sensor effectiveness. The results of the testing procedure, shown below in Table 2, illustrate the predicted result. The more absorptive colored shroud, i.e., the black speckle embodiment, had the greatest maximum detection distance because of its greater absorption characteristics.

TABLE 2

	Maximum Dete	ection Distance (fe	et)
 Lux	Black Speckle	Sandy Stone	White Speckle
8000	12.4	6.7	3.7
10000	11.4	5.3	2.6
12000	9.4	3.9	0.9
15000	7.8	2.5	0.2

The sensing capabilities, i.e., the effective sensing distance S1 of the sensor can be tailored to specific purposes by merely changing the color of the shroud. Additionally, if it is preferred to use a shroud comprising a generally lighter color, speckling of a darker color can be dispersed within the shroud to help improve the sensing capabilities of the sensor while not dramatically changing the overall color of the shroud. In some embodiments, the speckling dispersed within the shroud may be made using a dye having a chemical composition that reduces the reflective nature of the shroud, but is not visible to the human eye, thereby improving the sensing capabilities of the sensor without affecting the aesthetics of the shroud. Further, it is contemplated that instead of changing the color of the entirety of the shroud, a piece of the shroud located near the sensor may be constructed of a darker color. For example, if it was desirable to use a white shroud having a high reflective nature, a piece of the shroud located nearest the sensor could be dyed black to reduce the reflective nature of the shroud nearest the sensor, thereby enhancing the sensing capabilities of the dispensing system without greatly impacting the overall look of the shroud. Further, the piece of

the shroud nearest the sensor may be removable and interchangeable with other pieces of varying colors, thereby allowing a user to adjust the sensing capabilities of the dispensing system based on the user's preference and the environment in which the dispensing system is located.

In another embodiment, if it is not feasible or aesthetically pleasing to change the color of the shroud, an internal lens cover may be disposed over the sensor to help prevent background light noise that passes through the shroud from reaching the sensor. In a different embodiment the thickness t of the shroud sidewall may be increased to decrease the amount of background noise passing through the shroud to the sensor. Additionally, as discussed above, a lens cover may be used around the sensor to prevent background light noise from reaching the sensor. Alternatively, for devices located in smaller spaces such a bathroom, shrouds of lighter colors may be used to allow for a decreased sensing distance S1.

It is beneficial to be able to change the effective sensing distances of sensors by merely changing the shroud because manufacturers can create a single dispenser, which may be 20 transferred to different shrouds for different sensing needs depending on the environment in which the dispenser is located. Indeed, it is an intention of the present disclosure to teach and enable the use of modular systems that allow for entire shrouds or portions of shrouds to be removed from 25 dispensers and replaced with other shrouds or portions of shrouds to be responsive to the demands of users.

Exemplary Embodiment of a Dispensing System

FIGS. 24-28 illustrate one example of a dispensing system 500, which includes a dispenser 502 disposed within a shroud 504. The dispenser 502 is adapted for dispensing the contents of an aerosol container 506, which may include any fluid, volatile material, or product known to those of skill in the art. 35 The dispenser 502 may be one of the devices described in Carpenter et al. U.S. patent application Ser. No. 11/725,402, Furner et al. U.S. patent application Ser. No. 13/302,911, Gasper et al. U.S. patent application Ser. No. 13/607,581, and Baranowski et al. U.S. patent application Ser. No. 13/607, 40 581. The dispenser 502 generally includes a housing 508 that is adapted to receive the aerosol container 506 and batteries 510. The housing 508 also includes an actuator arm 512 and a button 514. In addition, the dispenser 502 also includes a controller 516, a motor 518, and a sensor 520, which are 45 provided within the housing 508 shown schematically in FIG.

Turning now to FIG. 26, the housing 508 of the dispenser 502 comprises a base portion 522, a top portion 524, and first and second sidewalls 526, 528, respectively, extending 50 between the base portion 522 and the top portion 524. The button 514 extends outwardly from the base portion 522 of the housing 508. An aperture 530 is disposed within the button 514. The aperture 530 is aligned with the sensor 520. The button 514 is provided for activating the dispenser 502 to 55 emit product upon depression of same, wherein the depression and/or rotation of the button 514 causes a switch (not shown) to generate a signal and the dispenser 502 to discharge product during manual activation.

The present embodiment also includes an actuator arm 60 cover 532 that extends upwardly from the top portion 524 to cover the actuator arm 512, however, the actuator arm cover 532 may be omitted. As shown in FIG. 26, the actuator arm 512 includes a main portion 534 and an overhang portion 536. The main portion 534 is coupled to a motor by a drive train 65 538. The overhang portion 536 of the actuator arm 512 extends from the main portion 534 and is substantially trans-

14

verse to the main portion **534**. In a pre-actuation position the overhang portion **536** is positioned slightly above or just in contact with a valve stem **540** of the aerosol container **506**. The dispenser **502** discharges product from the container **506** upon occurrence of a particular condition. The condition could be the manual activation of the dispenser **502** or the automatic activation of the dispenser **502** in response to an elapsed time interval or signal from the sensor **520**.

Referring to FIGS. 26 and 27, upon the occurrence of a particular condition, the controller 516 activates the motor 518 to pull the actuator arm 512 downwardly in a direction that is parallel to a longitudinal axis 542 of the container 506. Downward movement of the actuator arm 512 depresses the valve stem **540** of the container **506**. Depression of the valve stem 540 causes product to be released from the container 506, upwardly through a bore 544 in the overhang portion 536 of the actuator arm 512, and exited upwardly from the dispensing system 500 through an aperture 545 in an upper end of the shroud 504. After product is dispensed from the container 506 the motor 518 is activated to move the actuator arm 512 upwardly to a pre-actuation position. As the actuator arm 512 returns to an upward, unactuated position, the force on the valve stem 540 is removed, thereby closing the valve assembly within the container 506.

Referring again to FIG. 26, the housing 508 includes two posts 546 extending outwardly from the actuator arm cover 532. The posts 546 are pivotably attached to hinges (not shown) in the shroud 504, to retain the dispenser 502 within the shroud 504. As shown in FIGS. 24 and 27, the shroud 504 is generally tulip-shaped and includes a front portion 550 hingedly attached to a rear portion 552 of the shroud 504 near a bottom end 554 thereof. The front portion 550 is capable of being rotated to an open position to allow access to the dispenser 502 disposed within the shroud 504. The front portion 550 also includes an aperture 556 aligned with the sensor 520 located within the dispenser 502, and a button 558 extending from a similarly shaped aperture 560 in the front portion 550 of the shroud 504. The button 558 is aligned with the button 514 located in the base of the housing 508. The buttons 558 and 514 are aligned such that depression of the button 558 located on the shroud 504 depresses the button 514 on the dispenser 502. In one embodiment, the button 558 and the aperture 556 are both disposed within a modular portion 562 of the shroud 504, such that the modular portion 562 can be removed and replaced with a different modular portion 562 having a differently sized aperture 556. Alternatively, the entire shroud 504 may be removed and replaced with a shroud 504 having a differently sized aperture 556.

Referring now to FIG. 28 the sensor 520 is disposed on the dispenser 502 such that the front focal point 557 of the field of view 2Ø is located a distance h away from the shroud 504, which in the present embodiment is preferably between about 1 to about 50 millimeters, more preferably between about 15 millimeters to about 20 millimeters, and most preferably about 17.58 millimeters. The sensor 520 further includes a lens 564 having a length L of about 1 to about 25 millimeters, more preferably about 10 millimeters to about 12 millimeters, and most preferably about 11.38 millimeters. A distance k defines a virtual shield, which is the difference between the distance h and the lens length L. The distance k is preferably about 1 to about 50 millimeters and more preferably between about 3 to about 10 millimeters. The shroud 504 has a thickness t, which is preferably about 0.5 to about 5 millimeters. The sensor **520** has a field of view of 2Ø, which is preferably between about 5 to about 90 degrees, more preferably 10 to about 30 degrees, and most preferably about 12.33 degrees. A central axis X of the sensor 520 is aligned with the aperture

15

530 in the button **514** and the aperture **560** in the shroud **504**. In the present embodiment, the aperture **556** is sized so that a surface area S_S of the aperture **556** is coincident with a surface area S_V of the field of view 20 of the sensor **520**. As such, the aperture **556** performance factor S_A is approximately 1 and 5 the sensing capabilities of the dispensing system **500** are maximized.

All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.

INDUSTRIAL APPLICABILITY

Numerous modifications will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use what is herein disclosed and to teach the best mode of carrying out same. The exclusive rights to all modifications which come within the scope of this disclosure are reserved.

We claim:

- 1. A dispensing system, comprising:
- a dispenser;
- at least one sensor including a lens cover disposed around a portion of the at least one sensor;
- a shroud including at least one aperture; and
- a gap existing between an inner side of the shroud and a 30 distal end of the lens cover,
- wherein a virtual shield is provided in the gap between the distal end of the lens cover and the inner side of the shroud to reduce background noise,
- wherein an aperture performance factor S_A is defined by the ratio $S_A = S_S / S_V$, wherein S_S is a surface area of the at least one aperture in the shroud, and wherein S_V is a field of view surface area of the at least one sensor at an intersection with the shroud, wherein the field of view is defined with a viewing angle wherein the sensitivity 40 drops to 50% of an on-axis sensitivity of the at least one sensor, and

wherein $S_A \le 1$.

- 2. The dispensing system of claim 1, wherein the inner side of the shroud is coincident with the at least one aperture.
- 3. The dispensing system of claim 2, wherein the at least one sensor has a central axis X extending therethrough that intersects the at least one aperture.
- **4.** The dispensing system of claim **3**, wherein a distance between the input end of the sensor and the at least one $_{50}$ aperture adjacent the inner wall of the shroud is a distance h about the central axis X.
- **5**. The dispensing system of claim **4**, wherein the distance h is between about 15 to about 20 millimeters.

16

- **6**. The dispensing system of claim **5** wherein the lens cover has a length L between about 10 to about 12 millimeters.
- 7. The dispensing system of claim 6, wherein a length of the virtual shield is the difference between the distance h and the length L and is between about 3 to about 10 millimeters.
 - 8. A dispensing system, comprising:
 - a dispenser having at least one sensor; and
 - a shroud including at least one aperture spaced from the at least one sensor and a sensory shield disposed around at least a portion of the at least one sensor, wherein a gap exists between an inner side of the shroud and a distal end of the sensory shield,
 - wherein an aperture performance factor S_A is defined by the ratio $S_A = S_S / S_P$, wherein S_S is a surface area of the at least one aperture in the shroud, and wherein S_P is a field of view surface area of the at least one sensor at an intersection with the shroud, wherein the field of view is defined with a viewing angle wherein the sensitivity drops to 50% of an on-axis sensitivity of the at least one sensor, and

wherein $S_{A} \le 1$.

- **9**. The dispensing system of claim **8**, wherein $S_A=1$.
- 10. The dispensing system of claim 8, wherein $S_{\nu} > S_{S}$.
- 11. The dispensing system of claim $\mathbf{8}$, wherein the at least one sensor has a viewing angle \emptyset and is spaced a distance h from the at least one aperture.
- 12. The dispensing system of claim 11, wherein the at least one aperture is circular and has a diameter D, wherein D=2 (h*(tan \emptyset)) and S_A =1.
- 13. The dispensing system of claim 11, wherein the at least one aperture is circular and has a diameter D, and wherein $D < 2(h^*(\tan \emptyset))$ and $S_r > S_s$.
- 14. The dispensing system of claim 8, wherein S_S defines a circular surface area and S_V defines a circular surface area.
- 15. The dispensing system of claim 8, wherein $S_{\mathcal{S}}$ defines a non-circular surface area and $S_{\mathcal{V}}$ defines a circular surface area.
 - 16. A dispensing system, comprising:
 - a dispenser;

45

- at least one sensor; and
- a shroud including at least one aperture,
- wherein the shroud is light reflective and includes a colorant that provides a reduction in background noise of at least about 3% when compared to the shroud having a red colorant.
- 17. The dispensing system of claim 16, wherein the shroud includes a colorant that provides a reduction in background noise of at least about 15% when compared to the shroud having the red colorant.
- 18. The dispensing system of claim 16, wherein the shroud comprises a thermoplastic material.

* * * * *